Effective shared representations with Multitask Learning for Community Question Answering

نویسندگان

  • Alessandro Moschitti
  • Daniele Bonadiman
  • Antonio Uva
چکیده

An important asset of using Deep Neural Networks (DNNs) for text applications is their ability to automatically engineer features. Unfortunately, DNNs usually require a lot of training data, especially for high-level semantic tasks such as community Question Answering (cQA). In this paper, we tackle the problem of data scarcity by learning the target DNN together with two auxiliary tasks in a multitask learning setting. We exploit the strong semantic connection between selection of comments relevant to (i) new questions and (ii) forum questions. This enables a global representation for comments, new and previous questions. The experiments of our model on a SemEval challenge dataset for cQA show a 20% relative improvement over standard DNNs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent Neural Network Encoder with Attention for Community Question Answering

We apply a general recurrent neural network (RNN) encoder framework to community question answering (cQA) tasks. Our approach does not rely on any linguistic processing, and can be applied to different languages or domains. Further improvements are observed when we extend the RNN encoders with a neural attention mechanism that encourages reasoning over entire sequences. To deal with practical i...

متن کامل

Answer Selection in Arabic Community Question Answering: A Feature-Rich Approach

The task of answer selection in community question answering consists of identifying pertinent answers from a pool of user-generated comments related to a question. The recent SemEval-2015 introduced a shared task on community question answering, providing a corpus and evaluation scheme. In this paper we address the problem of answer selection in Arabic. Our proposed model includes a manifold o...

متن کامل

Multitask Learning with Deep Neural Networks for Community Question Answering

In this paper, we developed a deep neural network (DNN) that learns to solve simultaneously the three tasks of the cQA challenge proposed by the SemEval-2016 Task 3, i.e., question-comment similarity, question-question similarity and new question-comment similarity. The latter is the main task, which can exploit the previous two for achieving better results. Our DNN is trained jointly on all th...

متن کامل

Deep Asymmetric Multi-task Feature Learning

We propose Deep Asymmetric Multitask Feature Learning (Deep-AMTFL) which can learn deep representations shared across multiple tasks while effectively preventing negative transfer that may happen in the feature sharing process. Specifically, we introduce an asymmetric autoencoder term that allows predictors for the confident tasks to have high contribution to the feature learning while suppress...

متن کامل

A Deep Learning Approach for Expert Identification in Question Answering Communities

In this paper, we describe an effective convolutional neural network framework for identifying the expert in question answering community. This approach uses the convolutional neural network and combines user feature representations with question feature representations to compute scores that the user who gets the highest score is the expert on this question. Unlike prior work, this method does...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017